PD- 95675

International Rectifier

IRLMS2002PbF

HEXFET® Power MOSFET

- Ultra Low On-Resistance
- N-Channel MOSFET
- Surface Mount
- Available in Tape & Reel
- 2.5V Rated
- Lead-Free

Description

These N-Channel MOSFETs from International Rectifier utilize advanced processing techniques to achieve the extremely low on-resistance per silicon area. This benefit provides the designer with an extremely efficient device for use in battery and load management applications.

The Micro6™ package with its customized leadframe produces a HEXFET® power MOSFET with $R_{DS(on)}$ 60% less than a similar size SOT-23. This package is ideal for applications where printed circuit board space is at a premium. It's unique thermal design and $R_{DS(on)}$ reduction enables a current-handling increase of nearly 300% compared to the SOT-23.

Absolute Maximum Ratings

	Parameter	Max.	Units
V_{DS}	Drain- Source Voltage	20	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 4.5V	6.5	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 4.5V	5.2	Α
I _{DM}	Pulsed Drain Current ①	20	
P _D @T _A = 25°C	Power Dissipation	2.0	W
P _D @T _A = 70°C	Power Dissipation	1.3	VV
	Linear Derating Factor	0.016	W/°C
V_{GS}	Gate-to-Source Voltage	± 12	V
T _{J,} T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

	Parameter	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient®	62.5	°C/W

IRLMS2002PbF

Electrical Characteristics @ $T_J = 25$ °C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	20			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.016		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.030	Ω	V _{GS} = 4.5V, I _D = 6.5A ②
				0.045		V _{GS} = 2.5V, I _D = 5.2A ②
V _{GS(th)}	Gate Threshold Voltage	0.60		1.2	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
9 fs	Forward Transconductance	13			S	$V_{DS} = 10V, I_D = 6.5A$
I	Drain to Source Leakage Current			1.0	_	V _{DS} = 16V, V _{GS} = 0V
I _{DSS}	Drain-to-Source Leakage Current			25	μA	$V_{DS} = 16V, V_{GS} = 0V, T_{J} = 70^{\circ}C$
1	Gate-to-Source Forward Leakage			-100	nA	V _{GS} = -12V
I _{GSS}	Gate-to-Source Reverse Leakage			100	11/	V _{GS} = 12V
Qg	Total Gate Charge		15	22		$I_D = 6.5A$
Q _{gs}	Gate-to-Source Charge		2.2	3.3	nC	$V_{DS} = 10V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		3.5	5.3		V _{GS} = 5.0V ②
t _{d(on)}	Turn-On Delay Time		8.5			$V_{DD} = 10V$
t _r	Rise Time		11		no	$I_{D} = 1.0A$
t _{d(off)}	Turn-Off Delay Time		36		ns	$R_G = 6.0\Omega$
t _f	Fall Time		16			$R_D = 10\Omega$ ②
C _{iss}	Input Capacitance		1310			$V_{GS} = 0V$
Coss	Output Capacitance		150		pF	$V_{DS} = 15V$
C _{rss}	Reverse Transfer Capacitance		36			f = 1.0MHz

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions		
Is	Continuous Source Current		2.0		- A	MOSFET symbol		
	(Body Diode)			2.0		showing the		
I _{SM}	Pulsed Source Current		00	20	20	20	1 ^	integral reverse
	(Body Diode) ①	20		p-n junction diode.				
V _{SD}	Diode Forward Voltage			1.2	V	$T_J = 25^{\circ}C$, $I_S = 1.7A$, $V_{GS} = 0V$ ②		
t _{rr}	Reverse Recovery Time		19	29	ns	$T_J = 25^{\circ}C$, $I_F = 1.7A$		
Q _{rr}	Reverse Recovery Charge		13	20	nC	di/dt = 100A/µs ②		

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Pulse width \leq 400 μ s; duty cycle \leq 2%.

IRLMS2002PbF

International IOR Rectifier

Micro6 Tape & Reel Information

Dimensions are shown in milimeters (inches)

NOTES: 1. OUTLINE CONFORMS TO EIA-481 & EIA-541.

- CONTROLLING DIMENSION : MILLIMETER.
 OUTLINE CONFORMS TO EIA-481 & EIA-541.

This product has been designed and qualified for the consumer market. Data and specifications subject to change without notice.

