PD- 95675 # International Rectifier # IRLMS2002PbF #### HEXFET® Power MOSFET - Ultra Low On-Resistance - N-Channel MOSFET - Surface Mount - Available in Tape & Reel - 2.5V Rated - Lead-Free #### **Description** These N-Channel MOSFETs from International Rectifier utilize advanced processing techniques to achieve the extremely low on-resistance per silicon area. This benefit provides the designer with an extremely efficient device for use in battery and load management applications. The Micro6™ package with its customized leadframe produces a HEXFET® power MOSFET with $R_{DS(on)}$ 60% less than a similar size SOT-23. This package is ideal for applications where printed circuit board space is at a premium. It's unique thermal design and $R_{DS(on)}$ reduction enables a current-handling increase of nearly 300% compared to the SOT-23. #### **Absolute Maximum Ratings** | | Parameter | Max. | Units | |--|--|--------------|-------| | V_{DS} | Drain- Source Voltage | 20 | V | | I _D @ T _A = 25°C | Continuous Drain Current, V _{GS} @ 4.5V | 6.5 | | | I _D @ T _A = 70°C | Continuous Drain Current, V _{GS} @ 4.5V | 5.2 | Α | | I _{DM} | Pulsed Drain Current ① | 20 | | | P _D @T _A = 25°C | Power Dissipation | 2.0 | W | | P _D @T _A = 70°C | Power Dissipation | 1.3 | VV | | | Linear Derating Factor | 0.016 | W/°C | | V_{GS} | Gate-to-Source Voltage | ± 12 | V | | T _{J,} T _{STG} | Junction and Storage Temperature Range | -55 to + 150 | °C | #### **Thermal Resistance** | | Parameter | Max. | Units | |-----------------|------------------------------|------|-------| | $R_{\theta JA}$ | Maximum Junction-to-Ambient® | 62.5 | °C/W | # IRLMS2002PbF # Electrical Characteristics @ $T_J = 25$ °C (unless otherwise specified) | | Parameter | Min. | Тур. | Max. | Units | Conditions | |---------------------------------|--------------------------------------|------|-------|-------|-------|--| | V _{(BR)DSS} | Drain-to-Source Breakdown Voltage | 20 | | | V | $V_{GS} = 0V, I_D = 250\mu A$ | | $\Delta V_{(BR)DSS}/\Delta T_J$ | Breakdown Voltage Temp. Coefficient | | 0.016 | | V/°C | Reference to 25°C, I _D = 1mA | | R _{DS(on)} | Static Drain-to-Source On-Resistance | | | 0.030 | Ω | V _{GS} = 4.5V, I _D = 6.5A ② | | | | | | 0.045 | | V _{GS} = 2.5V, I _D = 5.2A ② | | V _{GS(th)} | Gate Threshold Voltage | 0.60 | | 1.2 | V | $V_{DS} = V_{GS}$, $I_D = 250\mu A$ | | 9 fs | Forward Transconductance | 13 | | | S | $V_{DS} = 10V, I_D = 6.5A$ | | I | Drain to Source Leakage Current | | | 1.0 | _ | V _{DS} = 16V, V _{GS} = 0V | | I _{DSS} | Drain-to-Source Leakage Current | | | 25 | μA | $V_{DS} = 16V, V_{GS} = 0V, T_{J} = 70^{\circ}C$ | | 1 | Gate-to-Source Forward Leakage | | | -100 | nA | V _{GS} = -12V | | I _{GSS} | Gate-to-Source Reverse Leakage | | | 100 | 11/ | V _{GS} = 12V | | Qg | Total Gate Charge | | 15 | 22 | | $I_D = 6.5A$ | | Q _{gs} | Gate-to-Source Charge | | 2.2 | 3.3 | nC | $V_{DS} = 10V$ | | Q_{gd} | Gate-to-Drain ("Miller") Charge | | 3.5 | 5.3 | | V _{GS} = 5.0V ② | | t _{d(on)} | Turn-On Delay Time | | 8.5 | | | $V_{DD} = 10V$ | | t _r | Rise Time | | 11 | | no | $I_{D} = 1.0A$ | | t _{d(off)} | Turn-Off Delay Time | | 36 | | ns | $R_G = 6.0\Omega$ | | t _f | Fall Time | | 16 | | | $R_D = 10\Omega$ ② | | C _{iss} | Input Capacitance | | 1310 | | | $V_{GS} = 0V$ | | Coss | Output Capacitance | | 150 | | pF | $V_{DS} = 15V$ | | C _{rss} | Reverse Transfer Capacitance | | 36 | | | f = 1.0MHz | ### **Source-Drain Ratings and Characteristics** | | Parameter | Min. | Тур. | Max. | Units | Conditions | | | |-----------------|---------------------------|------|------|---------------------|-------|--|-----|------------------| | Is | Continuous Source Current | | 2.0 | | - A | MOSFET symbol | | | | | (Body Diode) | | | 2.0 | | showing the | | | | I _{SM} | Pulsed Source Current | | 00 | 20 | 20 | 20 | 1 ^ | integral reverse | | | (Body Diode) ① | 20 | | p-n junction diode. | | | | | | V _{SD} | Diode Forward Voltage | | | 1.2 | V | $T_J = 25^{\circ}C$, $I_S = 1.7A$, $V_{GS} = 0V$ ② | | | | t _{rr} | Reverse Recovery Time | | 19 | 29 | ns | $T_J = 25^{\circ}C$, $I_F = 1.7A$ | | | | Q _{rr} | Reverse Recovery Charge | | 13 | 20 | nC | di/dt = 100A/µs ② | | | #### Notes: - ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11) - ② Pulse width \leq 400 μ s; duty cycle \leq 2%. # IRLMS2002PbF International IOR Rectifier # Micro6 Tape & Reel Information Dimensions are shown in milimeters (inches) # NOTES: 1. OUTLINE CONFORMS TO EIA-481 & EIA-541. - CONTROLLING DIMENSION : MILLIMETER. OUTLINE CONFORMS TO EIA-481 & EIA-541. This product has been designed and qualified for the consumer market. Data and specifications subject to change without notice.